free html templates

Soft Matter theory group

Universitat Rovira i Virgili, Tarragona, Spain

Research topics

The research of soft matter theory group led by Vladimir Baulin at Universitat Rovira i Virgili is focused around topics of polymer theory, biophysics and biotechnology. We are interested in interaction of nano-objects with lipid bilayers, cell membranes, in particular, membrane permeation induced by polymers and nanoparticles, self-assembly of vesicles, micelles, polyelectrolyte complexes, identification of toxicity of nanomaterials, design of mechanobactericidal anti-bacterial surfaces.

Lipid membranes

Theory and computer simulation of interactions between lipid membranes and nano-objects

Nanostructured surfaces

Modelling of interactions of nanostructured surface patterns with cells and proteins

Parallel algorithms for GPU

Development of new scientific methods and efficient parallel codes for GPU using CUDA

SNAL Initial Training Network

Vladimir Baulin coordinates multidisciplinary EU-funded project SNAL. The project is designed to provide scientific and transferable skill training and career development for MCSA early stage researchers in the field of nanomaterials interacting with cell membranes and artificial lipid bilayers applying complementary theoretical and experimental techniques.

We develop Episenses: Image Analysis tools

AI solutions for image aquisition and analysis: Episenses develops proprietary Artificial Intelligence (AI) and machine learning algorithms for broad range of applications in Image Analytics providing massive parallelization on modern GPUs. Processing, storage, management, presentation, and analytics of images.

Direct observation of nanoparticle crossing lipid membrane

The direct proof of this size-dependent translocation was provided by an in situ observation of a single event of a nanoparticle quitting the bilayer. We identified the threshold size for translocation: nanoparticles with diameters <5 nm stay trapped in the bilayer, whereas those with diameters >5 nm insert into the bilayer. (DOI: 10.1126/sciadv.1600261).

Insect wings shred bacteria to pieces

The nanopattern on the surface of Clanger cicada wings represents the first example of a new class of biomaterials that can kill bacteria on contact based solely on their physical surface structure. We propose a biophysical model of the interactions between bacterial cells and cicada wing surface nanopatterned structure. (DOI: 10.1038/nature.2013.12533)

Bactericidal activity of black silicon

First reported physical bactericidal activity of black silicon nanopattern. We show that the nanoprotrusions on the surfaces of black silicon structures generate a mechanical bactericidal effect, independent of chemical composition. It represents an excellent prospect for the development of a new generation of mechano-responsive, antibacterial nanomaterials. (DOI: 10.1038/ncomms3838).

Can a Carbon Nanotube Pierce through a Phospholipid Bilayer?

We find that the energy cost of the bilayer rupture is quite high compared to that of the energy of thermal motion. This conclusion may indirectly support other energy-dependent translocation mechanisms, such as, for example, endocytosis. (DOI: 10.1021/nn1016549).


  • Dr. Vladimir Baulin - Head of the group, see profile.
  • Dr. Marco Werner - Experienced reseacher and project manager of ITN SNAL. Expertise in polymer theory, Monte Carlo simulations of lipid bilayers, polymers, nanoparticles. CUDA programming. See profile.
  • Adrien Berthault - MCSA fellow within SNAL project. Molecular simulation models of biomimetic polymers in lipid bilayers. SCMF theory.  See profile.
  • Berardo Manzi - MCSA fellow within SNAL project. Interaction of nanoparticles and nanostructured surfaces with cells and proteins. Coarse-grained Molecular Dynamics methods. See profile.
  • André Dias - MCSA fellow within SNAL project. Toxicity of nano-objects for cells. In-vitro experiments. See profile.
  • Anna Orlowska - MCSA fellow within SNAL project. Toxicology studies of nanostructured objects and surfaces. In-vitro experiments. See profile.

We host Annual workshop on biomaterials and their interactions with biological and model membranes

The general topic of the meeting is the interaction of synthetic polymers, nanoparticles, surfactants, proteins, small biomolecules with biological and model phospholipid membranes.


Together with Prof. Elena Ivanova from Swinbourne University, Australia, we develop theoretical models to understend the mechanism of bacteria killing mechanism due to mechanical cell rupture by nanostructures. The goal of this project is to identify the criteria for cell toxicity and biocidal activity of a nanopatterned surfaces.

Dragonfly expedition to Massif Els Ports in collaboration between Museu de les Terres de l'Ebre, Amposta and Universitat Rovira i Virgili, Tarragona.


SCMF method is one of the theoretical tools exploited in the Soft Matter theory group in Tarragona. The SCMF theory describes a single molecule surrounded by the mean fields. It takes explicitly into account the structure of an individual molecule at a coarse-grained level similar to coarse-grained MC or MD simulations.

The SCMF theory is particularly suitable for the description of nano-objects like polymeric drug carriers: it gives a detailed microscopic information on the configurations of the chains, the optimal shape and structure of drug delivery systems, the distribution of chains in the aggregate, the critical micellar concentrations as well as the critical aggregation concentration, the optimal aggregation number and the size distributions.


Suggested mechanism of a lipid-covered hydrophobic nanoparticle spontaneously crossing lipid bilayer. In contrast to expectations, we demonstrate that lipid-covered hydrophobic nanoparticles may translocate through lipid membranes by direct penetration within milliseconds. We identified the threshold size for translocation: nanoparticles with diameters smaller than 5 nm stay trapped in the bilayer, whereas those with diameters larger than 5 nm insert into the bilayer, opening pores in the bilayer. 


We demonstrate an efficient method of polymer conformations generation massively in parallel. The mean field nature of the method allows for discarding the correlations between molecules, thus eliminating the need of communication between the cores. The method allows for evolutionary optimization of a molecule's architecture for biotechnological applications.

SOFTMAT web resource

SoftMat website dedicated to recent developments in bio-nanotechnology, lipid membranes with nano-objects including nanoparticles, nanotubes, polymers, polymeric micelles and polymer therapeutic complexes/conjugates. Updated list of conferences, publications and jobs announcements.

Social media channels:

Dr. Vladimir A. Baulin


office: +34 977 55 85 77

Universitat Rovira i Virgili
Av. Paisos Catalans 26
43007, Tarragona,

web page

Soft Matter theory group